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Please welcome AMoD

• The advent of autonomous vehicles offer a whole range 
of new opportunities

• Autonomous Mobility on-Demand promises to improve 
transportation quality for users and fleet usage 
efficiency for operators

But we should not forget that:

• Autonomous on-demand vehicles are not arriving in an 
empty space

• They have to efficiently collaborate with other services 
to achieve an attractive overall transportation offer

• The manner in which an autonomous on-demand 
vehicles fleet is operated strongly impacts its 
performance
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Challenges to tackle for AMoD

• Adaptiveness

• The mobility context is highly dynamic and constantly evolving 
• The offer of mobility can drastically change in a short period of time (before and after the Covid-19 crisis for 

example)

• Proactivity

• An AMoD system can rely on past experience to predict future demand and act beforehand in order to better satisfy 
transportation queries 

• Integration

• An AmoD system interacts, directly or indirectly, with other mobility systems. A good integration of these different 
services together is crucial for overall performance

Potential of using Reinforcement Learning for operating AMoD

• A system that continuously learns from the consequences of its decisions can adapt to changes in a 
situation and act in a proactive way. And if these actions are evaluated regarding the overall mobility 
performance, a good integration of AMoD in its environment can be achieved.

• Hence our PhD topic : Reinforcement Learning and Stochastic Optimization for the design of on-demand 
mobility services by simulation
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About the PhD subject

• Scientific Goals

• Design on-demand mobility services and simulate them in combination with classical public transports using 
MATSim

• Use techniques of decision under uncertainty to operate such a service in an efficient manner

• Take into account the infrastructure supporting the service; i.e the charging stations and the parking areas

• Our Practical Objective

• Arrive to a simulation of the future Paris-Saclay area (horizon 2030) mixing existing and future public transports 
alongside AMoD services with the infrastructure supporting it

• Be able to forecast the impact of the upcoming Grand Paris Express

• Also involves :

• Develop the required MATSim modules to simulate such a service

• Implement scenarios on various other regions.

• Maintain the reproducibility of the simulations
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Agent-Based simulation of mobility using
MATSim

• MATSim is an open-source activity based, multi-agent 
simulation framework implemented in JAVA

• It simulates each agent individually, i.e microscopic

• It uses a queue based model for travelling through links 
of the network

• MATSim performs iterations of the simulation applying 
the co-evolutionary principle : each agent tries to 
optimize its schedule while competing with other 
agents 

• The agents changing their plans to maximize individual 
scores allows us to assess service impacts on modal 
shares 
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State of the art
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• MATSim provides various rebalancing algorithms

• One tries to estimate the next demand [1]

• Modelling the rebalancing problem as a transportation problem

• Estimating the number of requests during the next time slot from the same time slot of previous iterations

• Existing studies use RL for rebalancing & dispatch in simulation

• The tools used for the simulation often do not allow to assess the impact on travelers' choices and modal shares ([2][3])

• Some of the studies are performed on built-in simulators and are hardly reproducible ([3])

• [4] Uses a centralized RL approach for empty vehicle rebalancing

• Electric vehicles and recharging decisions are not considered

• Our study

• Introduces a first decentralized RL algorithm for empty vehicle rebalancing in MATSim

• Is fully reproducible

• Serves as a foundation for next studies



Reinforcement learning
• The considered agent(s)

• The agent has a set A of possible actions

• A value function V indicating the desirability of being in a given 
state

• A policy P mapping environment’s states to actions

• A model of the reinforcement (how the agent learns)

• The environment in which the agent evolves
• The environment has a set S of possible state

• The environment can be fully or partially observable by the 
agent(s)

• It can be static (changes only when agent performs an action) or 
dynamic

• After each action, the agent receives a reward value by the 
environment
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How to implement Reinforcement learning in MATSim

• First implement a rebalancing strategy that uses RL

• Rebalancing is usually performed periodically considering discrete zones of the network

• Exploring how rebalancing strategies are implemented in MATSim’s DRT module

• An existing functionality estimates the next demand from the previous iteration

• Technical questions that arise:

• How to position the reinforcement learning loop relatively to the simulation loop ?

• Apply reinforcement after each MATSim iteration

• Apply reinforcement after iterating in MATSim and then simulate again

• Where to implement the RL algorithm ?

• Directly inside the DRT module, in JAVA

• As an external API that is called by the DRT module
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Remote Rebalancer

• An external API to be requested by MATSim’s DRT module  

• A Remote Rebalancer tool written in Python

• Communication with MATSim through TCP requests
• Allows to have the rebalancing part running in another machine/server

• Allows to test various algorithms without the need to touch MATSim’s code

• Is it reasonable to perform the rebalancing out of MATSim and have it wait for answers ?
• The benchmarks say yes !
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A first RL algorithm in MATSim: 

• We implemented a Q-Learning rebalancing algorithm 

• Decentralized : Each vehicle learns on its own

• An agent’s state is comprised of:
• Its discretized position on the road network (current zone)

• The discretized current time

• The action space corresponds to the zones that the network is discretized to
• A vehicle chooses one zone to rebalance to and moves to its centroid

• The reward received by a vehicle is the number of passengers since last rebalancing

• After each action a from state s leading to state s’, the vehicle updates its Q-Table based on 
the reward r

𝑄 𝑠, 𝑎 ← 1 − α 𝑄 𝑠, 𝑎 + α(𝑟 + γmax
𝑎′

𝑄[𝑠′, 𝑎′])

• At each step, there a probability that the vehicle choses a random action (ε-greedy)

• The implementation was done as an external software MATSim calls through TCP requests 
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Our experiments: 

• Tested on an open MATSim Scenario (Cottbus)
• The replanning of the agents was disabled 

• Alongside MATSim’s default vehicle assignment
• A request is rejected if the expected max wait time for the users is over a certain threshold

• The objective is then twofold : reduce waiting times and the number of rejected requests

• First tests of the QLearning algorithm with 200 vehicles

• We tested the rebalancing algorithms already present (MinCostFlow and PlusOne) in MATSim 
with various fleet sizes until they showed rejected requests

• We then tested the QLearning algorithm with different values for the parameters (alpha, 
gamma and epsilon) and different fleet sizes and compared the best settings
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Our results: 
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Our results: 
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Conclusions from out first results
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• A decentralized QLearning rebalancing algorithm is able to show good results on a static demand

• A more dynamic testbed is needed to benchmark the algorithm

Other reward signals for the algorithm are being tested

• A reward reflecting the cost/revenue of the service

• A lexicographic reward with the number of passengers and waiting times
• The first results show similar performance to the first QLearning algorithm
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• Take into account electric vehicles in the RL algorithm
• Including the state of charge in the state and charging stations in the possible actions

• Curse of dimensionality, need to use more compact representations

• Test on a scenario of the Paris-Saclay area
• More realistic and more dynamic demand

• Alongside public transports with a focus on intermodality

• Then test on other scenarios 

• Combine MATSim simulations with Cost-Benefit Analysis
• In collaboration with another PhD student

Research perspectives
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