
04/10/2021

Anthropolis Chair and Future
Cities Lab

Joint Seminar Series 2021-2022

September 29th, 2021

Photo by Pierre Blanché, 2019 creative commons

Anthropolis Chair and Future Cities Lab Joint Seminar Series 2021-2022

• 14 seminars during this 2nd edition

• Presentations from the Anthropolis Chair, the Future Cities Lab and more

• Full programme available on our website www.chaire-anthropolis.fr

• Subscribe to our mailing list to stay informed about our events

• We are also on twitter: @CAnthropolis

• Stay tuned with the Future Cities Lab : www.futurecitieslab.city

https://www.chaire-anthropolis.fr
https://forms.office.com/Pages/ResponsePage.aspx?id=fEy778GKbUG_MHkb6GqtC2fW0sHFL8RBuO0WGGYRyhlUQ0JMOTIwNEwwTkg3QzVCWlRSVE83TkZKRiQlQCN0PWcu
https://twitter.com/CAnthropolis
https://www.futurecitieslab.city

04/10/2021

Presented by

Session 1: Anthropolis Chair and Future Cities
Lab Joint Seminar

Tarek CHOUAKI

PhD Student

Implementing and Using Reinforcement Learning for Empty
Empty Shared Vehicle Rebalancing in Multi-Agent Transport
Simulation MATSim

tarek.chouaki@irt-systemx.fr

Jakob Puchinger

Supervisor

Sebastian Horl

Co-Supervisor

Please welcome AMoD

• The advent of autonomous vehicles offer a whole range
of new opportunities

• Autonomous Mobility on-Demand promises to improve
transportation quality for users and fleet usage
efficiency for operators

But we should not forget that:

• Autonomous on-demand vehicles are not arriving in an
empty space

• They have to efficiently collaborate with other services
to achieve an attractive overall transportation offer

• The manner in which an autonomous on-demand
vehicles fleet is operated strongly impacts its
performance

4

Challenges to tackle for AMoD

• Adaptiveness

• The mobility context is highly dynamic and constantly evolving
• The offer of mobility can drastically change in a short period of time (before and after the Covid-19 crisis for

example)

• Proactivity

• An AMoD system can rely on past experience to predict future demand and act beforehand in order to better satisfy
transportation queries

• Integration

• An AmoD system interacts, directly or indirectly, with other mobility systems. A good integration of these different
services together is crucial for overall performance

Potential of using Reinforcement Learning for operating AMoD

• A system that continuously learns from the consequences of its decisions can adapt to changes in a
situation and act in a proactive way. And if these actions are evaluated regarding the overall mobility
performance, a good integration of AMoD in its environment can be achieved.

• Hence our PhD topic : Reinforcement Learning and Stochastic Optimization for the design of on-demand
mobility services by simulation

5

About the PhD subject

• Scientific Goals

• Design on-demand mobility services and simulate them in combination with classical public transports using
MATSim

• Use techniques of decision under uncertainty to operate such a service in an efficient manner

• Take into account the infrastructure supporting the service; i.e the charging stations and the parking areas

• Our Practical Objective

• Arrive to a simulation of the future Paris-Saclay area (horizon 2030) mixing existing and future public transports
alongside AMoD services with the infrastructure supporting it

• Be able to forecast the impact of the upcoming Grand Paris Express

• Also involves :

• Develop the required MATSim modules to simulate such a service

• Implement scenarios on various other regions.

• Maintain the reproducibility of the simulations

6

Agent-Based simulation of mobility using
MATSim

• MATSim is an open-source activity based, multi-agent
simulation framework implemented in JAVA

• It simulates each agent individually, i.e microscopic

• It uses a queue based model for travelling through links
of the network

• MATSim performs iterations of the simulation applying
the co-evolutionary principle : each agent tries to
optimize its schedule while competing with other
agents

• The agents changing their plans to maximize individual
scores allows us to assess service impacts on modal
shares

7

State of the art

8

• MATSim provides various rebalancing algorithms

• One tries to estimate the next demand [1]

• Modelling the rebalancing problem as a transportation problem

• Estimating the number of requests during the next time slot from the same time slot of previous iterations

• Existing studies use RL for rebalancing & dispatch in simulation

• The tools used for the simulation often do not allow to assess the impact on travelers' choices and modal shares ([2][3])

• Some of the studies are performed on built-in simulators and are hardly reproducible ([3])

• [4] Uses a centralized RL approach for empty vehicle rebalancing

• Electric vehicles and recharging decisions are not considered

• Our study

• Introduces a first decentralized RL algorithm for empty vehicle rebalancing in MATSim

• Is fully reproducible

• Serves as a foundation for next studies

Reinforcement learning
• The considered agent(s)

• The agent has a set A of possible actions

• A value function V indicating the desirability of being in a given
state

• A policy P mapping environment’s states to actions

• A model of the reinforcement (how the agent learns)

• The environment in which the agent evolves
• The environment has a set S of possible state

• The environment can be fully or partially observable by the
agent(s)

• It can be static (changes only when agent performs an action) or
dynamic

• After each action, the agent receives a reward value by the
environment

9

How to implement Reinforcement learning in MATSim

• First implement a rebalancing strategy that uses RL

• Rebalancing is usually performed periodically considering discrete zones of the network

• Exploring how rebalancing strategies are implemented in MATSim’s DRT module

• An existing functionality estimates the next demand from the previous iteration

• Technical questions that arise:

• How to position the reinforcement learning loop relatively to the simulation loop ?

• Apply reinforcement after each MATSim iteration

• Apply reinforcement after iterating in MATSim and then simulate again

• Where to implement the RL algorithm ?

• Directly inside the DRT module, in JAVA

• As an external API that is called by the DRT module

10

How to implement Reinforcement learning in MATSim

• First implement a rebalancing strategy that uses RL

• Rebalancing is usually performed periodically considering discrete zones of the network

• Exploring how rebalancing strategies are implemented in MATSim’s DRT module

• An existing functionality estimates the next demand from the previous iteration

• Technical questions that arise:

• How to position the reinforcement learning loop relatively to the simulation loop ?

• Apply reinforcement after each MATSim iteration

• Apply reinforcement after iterating in MATSim and then simulate again

• Where to implement the RL algorithm ?

• Directly inside the DRT module, in JAVA

• As an external API that is called by the DRT module

11

Remote Rebalancer

• An external API to be requested by MATSim’s DRT module

• A Remote Rebalancer tool written in Python

• Communication with MATSim through TCP requests
• Allows to have the rebalancing part running in another machine/server

• Allows to test various algorithms without the need to touch MATSim’s code

• Is it reasonable to perform the rebalancing out of MATSim and have it wait for answers ?
• The benchmarks say yes !

12

A first RL algorithm in MATSim:

• We implemented a Q-Learning rebalancing algorithm

• Decentralized : Each vehicle learns on its own

• An agent’s state is comprised of:
• Its discretized position on the road network (current zone)

• The discretized current time

• The action space corresponds to the zones that the network is discretized to
• A vehicle chooses one zone to rebalance to and moves to its centroid

• The reward received by a vehicle is the number of passengers since last rebalancing

• After each action a from state s leading to state s’, the vehicle updates its Q-Table based on
the reward r

𝑄 𝑠, 𝑎 ← 1 − α 𝑄 𝑠, 𝑎 + α(𝑟 + γmax
𝑎′

𝑄[𝑠′, 𝑎′])

• At each step, there a probability that the vehicle choses a random action (ε-greedy)

• The implementation was done as an external software MATSim calls through TCP requests

13

Our experiments:

• Tested on an open MATSim Scenario (Cottbus)
• The replanning of the agents was disabled

• Alongside MATSim’s default vehicle assignment
• A request is rejected if the expected max wait time for the users is over a certain threshold

• The objective is then twofold : reduce waiting times and the number of rejected requests

• First tests of the QLearning algorithm with 200 vehicles

• We tested the rebalancing algorithms already present (MinCostFlow and PlusOne) in MATSim
with various fleet sizes until they showed rejected requests

• We then tested the QLearning algorithm with different values for the parameters (alpha,
gamma and epsilon) and different fleet sizes and compared the best settings

14

https://github.com/matsim-org/matsim-maas/tree/master/scenarios/cottbus

Our results:

0

200

400

600

800

1000

1200

1400

1600

0 3 6 9

1
2

1
5

1
8

2
1

2
4

2
7

3
0

3
3

3
6

3
9

4
2

4
5

4
8

5
1

5
4

5
7

6
0

6
3

6
6

6
9

7
2

7
5

7
8

8
1

8
4

8
7

9
0

9
3

9
6

9
9

Rejected requests Numbers comparison for 110 vehicles

MinCostFlow PlusOne QLearning

0

200

400

600

800

1000

1200

1400

0 3 6 9

1
2

1
5

1
8

2
1

2
4

2
7

3
0

3
3

3
6

3
9

4
2

4
5

4
8

5
1

5
4

5
7

6
0

6
3

6
6

6
9

7
2

7
5

7
8

8
1

8
4

8
7

9
0

9
3

9
6

9
9

Rejected requests Numbers comparison for 120 vehicles

MinCostFlow PlusOne Qlearning

0

200

400

600

800

1000

1200

1400

0 3 6 9

1
2

1
5

1
8

2
1

2
4

2
7

3
0

3
3

3
6

3
9

4
2

4
5

4
8

5
1

5
4

5
7

6
0

6
3

6
6

6
9

7
2

7
5

7
8

8
1

8
4

8
7

9
0

9
3

9
6

9
9

Rejected requests numbers comparison for 130 vehicles

MinCostFlow PlusOne Qlearning

0

200

400

600

800

1000

1200

1400

0 3 6 9

1
2

1
5

1
8

2
1

2
4

2
7

3
0

3
3

3
6

3
9

4
2

4
5

4
8

5
1

5
4

5
7

6
0

6
3

6
6

6
9

7
2

7
5

7
8

8
1

8
4

8
7

9
0

9
3

9
6

9
9

Rejected requests numbers comparison for 140 vehicles

MinCostFlow PlusOne Qlearning

15

Our results:

0

100

200

300

400

500

600

700

800

900

0 3 6 9

1
2

1
5

1
8

2
1

2
4

2
7

3
0

3
3

3
6

3
9

4
2

4
5

4
8

5
1

5
4

5
7

6
0

6
3

6
6

6
9

7
2

7
5

7
8

8
1

8
4

8
7

9
0

9
3

9
6

9
9

Waiting times comparison for 110 vehicles

MinCostFlow PlusOne Qlearning

0

100

200

300

400

500

600

700

800

900

0 3 6 9

1
2

1
5

1
8

2
1

2
4

2
7

3
0

3
3

3
6

3
9

4
2

4
5

4
8

5
1

5
4

5
7

6
0

6
3

6
6

6
9

7
2

7
5

7
8

8
1

8
4

8
7

9
0

9
3

9
6

9
9

Waiting times comparison for 120 vehicles

MinCostFlow PlusOne Qlearning

0

100

200

300

400

500

600

700

800

900

0 3 6 9

1
2

1
5

1
8

2
1

2
4

2
7

3
0

3
3

3
6

3
9

4
2

4
5

4
8

5
1

5
4

5
7

6
0

6
3

6
6

6
9

7
2

7
5

7
8

8
1

8
4

8
7

9
0

9
3

9
6

9
9

Waiting times comparison for 130 vehicles

MinCostFlow PlusOne Qlearning

0

100

200

300

400

500

600

700

800

900

0 3 6 9

1
2

1
5

1
8

2
1

2
4

2
7

3
0

3
3

3
6

3
9

4
2

4
5

4
8

5
1

5
4

5
7

6
0

6
3

6
6

6
9

7
2

7
5

7
8

8
1

8
4

8
7

9
0

9
3

9
6

9
9

Waiting times comparison for 140 vehicles

MinCostFlow PlusOne Qlearning

16

Conclusions from out first results

17

• A decentralized QLearning rebalancing algorithm is able to show good results on a static demand

• A more dynamic testbed is needed to benchmark the algorithm

Other reward signals for the algorithm are being tested

• A reward reflecting the cost/revenue of the service

• A lexicographic reward with the number of passengers and waiting times
• The first results show similar performance to the first QLearning algorithm

18

• Take into account electric vehicles in the RL algorithm
• Including the state of charge in the state and charging stations in the possible actions

• Curse of dimensionality, need to use more compact representations

• Test on a scenario of the Paris-Saclay area
• More realistic and more dynamic demand

• Alongside public transports with a focus on intermodality

• Then test on other scenarios

• Combine MATSim simulations with Cost-Benefit Analysis
• In collaboration with another PhD student

Research perspectives

19

Referefences
• [1] Regue, Robert, et Will Recker. « Proactive Vehicle Routing with Inferred Demand to Solve the Bikesharing

Rebalancing Problem ». Transportation Research Part E: Logistics and Transportation Review 72 (décembre 2014):
192-209. https://doi.org/10.1016/j.tre.2014.10.005.

• [2] Gueriau, M., F. Cugurullo, R. A. Acheampong, et I. Dusparic. « Shared Autonomous Mobility on Demand: A
Learning-Based Approach and Its Performance in the Presence of Traffic Congestion ». IEEE Intelligent Transportation
Systems Magazine 12, nᵒ 4 (winter 2020): 208-18. https://doi.org/10.1109/MITS.2020.3014417.

• [3] Al-Abbasi, Abubakr O, Arnob Ghosh, et Vaneet Aggarwal. « DeepPool: Distributed Model-Free Algorithm for Ride-
Sharing Using Deep Reinforcement Learning ». IEEE Transactions on Intelligent Transportation Systems 20, nᵒ 12
(décembre 2019): 4714-27. https://doi.org/10.1109/TITS.2019.2931830.

• [4] Fluri, C., C. Ruch, J. Zilly, J. Hakenberg, et E. Frazzoli. « Learning to Operate a Fleet of Cars ». In 2019 IEEE Intelligent
Transportation Systems Conference (ITSC), 2292-98, 2019. https://doi.org/10.1109/ITSC.2019.8917533.

https://doi.org/10.1109/MITS.2020.3014417
https://doi.org/10.1109/TITS.2019.2931830

04/10/2021

Thank you for your attention

Nest Seminar

DOES THE LABOR COMPETITION REALLY MATTER TO URBAN AGGLOMERATION DEVELOPMENT ?

Han WANG, PhD Candidate, Beihang University, Beijing

WEDNESDAY, OCTOBER 13th, 2021 | 10-11 AM CEST

Link to the seminar

https://us02web.zoom.us/j/82885450843?pwd=Yk1tTGtwejdqdXZjK1BVMUdoYmF1dz09

