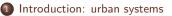
Morphogenesis of urban systems Modelling the co-evolution of human transport and urban forms

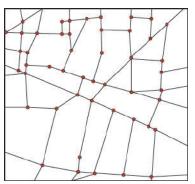
Michele Tirico^{1,2}

¹Future Cities Lab., École Centrale de Pékin and CentraleSupélec


²LGI Lab., CentraleSupélec, University of Paris-Saclay

Wednesday 9th February, 2022

Overview


Morphogenesis of urban systems. Modelling the co-evolution of human transport and urban forms

- 2 Morphogenesis of street networks
- O-evolution of human transport and urban forms

Keywords: street network model, urban morphogenesis, complex systems, spatial networks, reaction-diffusion system, multi-modal transportation networks

Morphogenesis of urban systems

Cities as complex systems

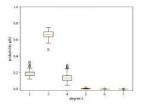
Cities are composed by many distinct heterogeneous elements. Unexpected behaviours emerge from local and decentralized interactions [3, 5, 2].

The underlying networks

Street network: the backbone of the city. **Geometric planar graph**: nodes are embedded in Euclidean space and links represent the physical support of the system [4].

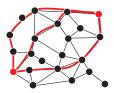
Focus: morphogenesis of street networks

The process by which self-organized systems develop their shapes and specialize subpart of systems [1].


In an **urban system**, elements (e.g. population, socio-economical actors) shape and transform the urban form (e.g. streets, built-up).

M. Tirico (Future Cities Lab., LGI Lab.)

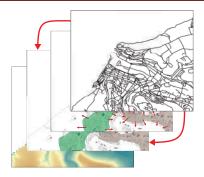
Properties of street networks [6, 7]


Vertex degree distribution

Robustness

Spatial patterns

Observation: cities as an overlapping of interrelated layers


Environment

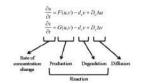
Geomorphology of the region of space

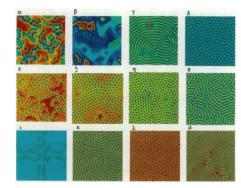
- Urban fabrics Physical elements of city
- Urban forms Properties arranged as spatial patterns
- Contrasting forces Spatial patterns influence the transformation
- Street network Around streets properties arrange
- Feedback Streets affect other elements

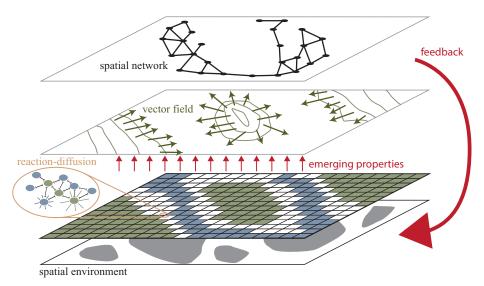
Street network morphogenesis

The result of different interconnected levels of dynamics and elements

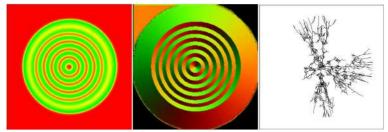
Inspiration: pattern formation with reaction-diffusion theory



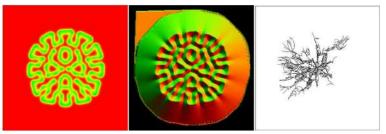



Morphogens

Form-producing elements. In a living system, their concentrations induce the cells to differentiate [1]

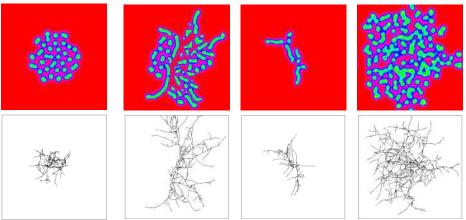


Modelling street network morphogenesis [8]



Simulations

Pattern holes



Pattern mazes

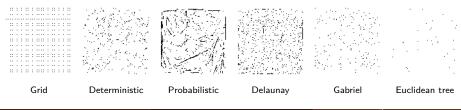
A complex behaviour

Without feedback

With feedback

- mixed patterns in R-D layer
- elaborate structures in the network
- feedback controls the growth rate of the network

Model behaviour

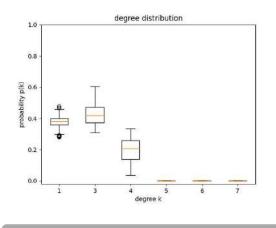

Motivation

Understand the behaviour of the model comparing results to theoretical and empirical data.

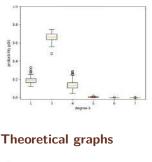
Dataset

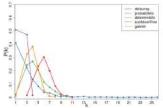
- French department cities
- urban area of Le Havre
- theoretical geometric planar graph
- simulated graphs

Theoretical geometric planar graphs



French department cities

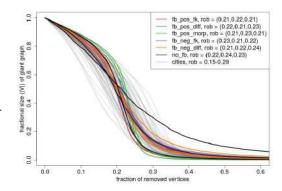

Degree distribution


Simulated networks

The shape of the distribution is similar to cities

French cities

M. Tirico (Future Cities Lab., LGI Lab.)


Robustness

Robustness of systems

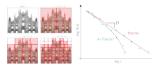
The capacity to accomplish its task and work after the failure of some elements.

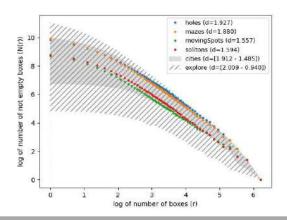
Computation

- giant component
- remove a number of vertices
- compute the size
- robustness: the value of fraction of vertices required for the giant component to reach the 50 % of the size of the graph
- average over 100 runs

- o cities are between the tree graph and other theoretic graphs
- simulated networks have a similar robustness of cities

Fractal theory

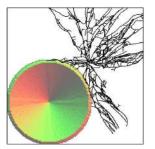

Scale invariance


Scale invariance of systems

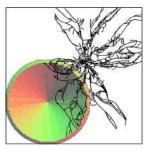
Similar properties at different scales of observation

Boxing counting

The relation between the minimum number of boxes to include vertices and the size of the box

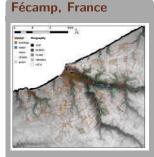

The degree of multi-fractality of real and simulated networks are similar

Combine different vector fields

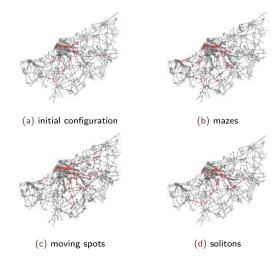

Motivation

Spatial (static) constraints (orography, rivers, sea...) impact the formation of streets. The model allows us to combine different vector fields


Sea

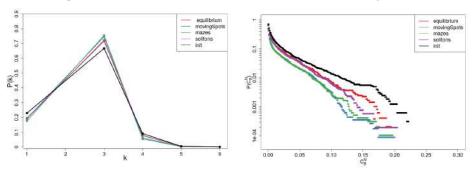

Hill

River


An application in urban growth: Fécamp town

The model also allows to consider:

- the orography
- the built-up density
- green area
- political decisions


Spatial distribution of the betweenness centrality

Betweenness centrality distribution

Fécamp town - observed properties

- simulated networks (coloured lines) conserve the main characteristics of the starting network (black lines) with variations
- more organic forms (many tree-like structures and bifurcations)

Vertex degree distribution

Morphogenesis of urban systems - Conclusion

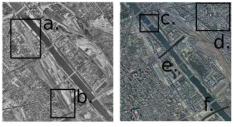
Model behaviour

- Dynamics are completely decentralized and driven by feedback over layers
- Properties of real street networks and simulated networks are similar [8]
- The model can be used to investigate the morphogenesis of street networks and help urban planners

Morphogenesis of street networks

An unpredictable combination of endogenous factors (rate of growth, randomness, topology, geometry) and exogenous dynamics (patterns, feedback) to the network.

Reaction-diffusion theory


- Morphogens: spatially embedded, interact each others, are involved in competition/cooperation processes, move and may arranged with regularity
- In an urban application, morphogens can represent real activators or inhibitors of urban growth (e.g. population, economical factor and political actions)
- An early "proof": simple and decentralized mechanisms (reaction-diffusion) may be behind the morphogenesis of street networks

Perspectives: co-evolution of human transport and urban forms

Limits

- Morphogens: are they able to represent decisions of individuals?
- Dynamics over the network. How we can consider it?
- Morphogenesis = growth + transformation. How we can consider both?

An example: Quai de Bercy (Paris)

(a) 1960

- a. transformation of the train station
- b. a new residential area
- c. a new bridge
- d. reorganization of streets
- e. the enlargement of a bridge
- f. a new motorway bridge

Mobility play a crucial role in morphogenesis of urban forms

Co-evolution of human transport and urban forms

To consider

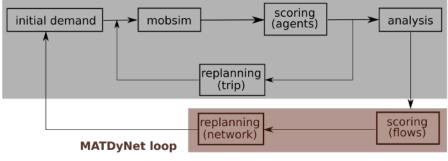
- new mobility modes and new lifestyles
- humans move over a multimodal (multilayer) transportation network
- individual are decision makers

Technical challenge

The computational framework must integrate:

- an evolving multi-modal transportation network
- micro-simulation of individuals

Co-evolution of human transport and urban forms

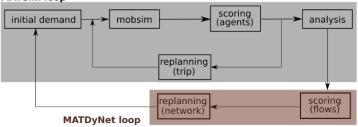

MATSim

- multi-agent transport simulation framework
- decision makers represented individually ("agents")
- daily activity-travel patterns ("plans")
- modular and extendable

MATSim loop

MATDyNet

- evolving multi-modal transportation network
- network transform locally in accordance to emerging traffic situations



M. Tirico (Future Cities Lab., LGI Lab.)

Co-evolution of human transport and urban forms

Next steps

- formalize and develop the MATDyNet library (Python)
- build a dataset about 2 study cases (Paris and Beijing)
- quantitatively measure the transformation of the network (connectivity, robustness, geometrical and topological characteristics)
- evaluate the impact to urban mobility (congestion, pollution, accessibility)
- make scenarios and evaluate the impact of individual behaviours or policymaker decisions to cities

MATSim loop

Thank You

Michele Tirico

Postdoctoral researcher Future Cities lab. École Centrale de Pékin/CentraleSupélec LGI lab. CentraleSupélec, University of Paris-Saclay

Contacts

mail: michele.tirico@centralesupelec.fr twitter: @MicheleTirico website: https://micheletirico.github.io/ GitHub: https://github.com/MicheleTirico/

- Turing, A. M. (1952). "The Chemical Basis of Morphogenesis". In: Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 237.641, pp. 37–72.
- Pumain, D. et al. (1989). Villes et auto-organisation. Paris: Economica. 191 pp.
- Portugali, J. (2006). "Complexity Theory as a Link between Space and Place". In: *Environment and Planning A* 38.4, pp. 647–664.
- Barthelemy, M. (2011). "Spatial networks". In: Physics Reports 499.1, pp. 1-101.
- Batty, M. (2013). *The New Science of Cities*. Publisher: The MIT Press. Cambridge: The MIT Press.
- Fusco, G. and M. Tirico (2016). "Configurational Approaches to Urban Form: Empirical Test on the City of Nice (France)". In: Proceedings of the 9th INPUT International Conference on Innovation in Urban and Regional Planning. Ed. by S.-I. DIST. Turin: SiTI, pp. 376–382.
- Tirico, M. et al. (2019). "Morphogenesis of Complex Networks: A Reaction Diffusion Framework for Spatial Graphs". In: *Complex Networks and Their Applications VII*.
 Ed. by L. M. Aiello et al. Studies in Computational Intelligence. Springer International Publishing, pp. 769–781.
- Tirico, M. (2020). "Morphogenesis of complex networks. An application in urban growth". PhD thesis. Le Havre: Le Havre Normandy University. 203 pp.