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1. Introduction:  
E-ADARP
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Few studies have been done to investigate the influence of electric 
vehicle on DARP optimization (Bongiovanni et al., 2019)

Using battery electric vehicles

- Becoming increasing relevant in green 
freight transportation (no pollutant emissions 
and lower noise pollution)

- Limitations: higher initial investment, 
reduced range, potential need to recharge 
on the route

Providing ride-sharing services

- Reduce the number of vehicles on route, 
benefit users with discounted price

- Dial-a-Ride problem (DARP): a fleet of vehicles 
provides ride-sharing services to users specifying 
their origins, destinations, and preferred arrival 
time

Transport-related problems: greenhouse gas emission, congestion…

Two possible directions to address these concerns

1.1 Introduction: E-ADARP 
Background
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Pocket City, Codebrew Games, Inc., 2020

1.2 Introduction: E-ADARP 
E-ADARP example: 4 vehicles 16 requests

Illustrative example of E-ADARP
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Illustrative example of DARP

Characteristics of DARP (differs from VRP): 

- Pair and precedence constraint 
 -> drop-off node should be visited after its pickup node 
 -> drop-off node and the corresponding pickup node  
should on the same route. 

- The service quality should be considered 
 -> a maximum user ride time is set as constraint 
 -> the delay of service begin time is possible to  
eliminate the unnecessary waiting time and improve  
service quality

1.2 Introduction: E-ADARP 
E-ADARP characteristics
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Characteristics of DARP (differs from VRP): 

1.2 Introduction: E-ADARP 
E-ADARP characteristics
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Illustrative example of improving service quality by delaying the service 
begin time at previous node



Characteristics of DARP (differs from VRP): 

1.2 Introduction: E-ADARP 
E-ADARP characteristics
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Illustrative example of improving service quality by delaying the service 
begin time at previous node



Characteristics of DARP (differs from VRP): 

- The service quality should be considered 

 -> a maximum user ride time is set as constraint 

 -> the delay of service begin time helps to  
improve service quality 

1.2 Introduction: E-ADARP 
E-ADARP characteristics
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“Eight-step” method in Cordeau and Laporte (2003) 
- calculate Forward Time Slack 
- improve the solution feasibility 
  

To improve solution feasibility



Characteristics of E-ADARP (differs from DARP): 

• Weighted-sum objective function 
 -  total travel time for all vehicles 
 -  total excess user ride time for all the users 
 => need to optimize the schedule! 

No method has been designed to 
determine the optimal schedule…

1.2 Introduction: E-ADARP 
E-ADARP characteristics
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“Eight-step” method in Cordeau and Laporte (2003)? 
 - calculate Forward Time Slack 
 - improve the solution feasibility 
 - cannot guarantee to get “optimal” schedule! 

  



Characteristics of E-ADARP (differs from DARP): 

• Weighted-sum objective function 
 -  total travel time for all vehicles 
 -  total excess user ride time for all the users 

• The use of EAVs  

 - Detour to recharging station on the route 
 - Partial recharging at recharging stations 
 - No restriction on route duration 
 - Limit of visit to recharging stations 
 - Minimum battery level at the end of route 

Illustrative example of 4 vehicles and 16 requests

Three different scenarios: 10%, 40%, and 70% of total energy 
being kept at the end of route

1.2 Introduction: E-ADARP 
E-ADARP characteristics
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Minimizing total travel time and excess user ride time:  !1 = 0.75,  !2 = 0.25
Objective: 
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1.3 Introduction: E-ADARP 
Problem definition
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Illustrative example of 4 vehicles and 16 requests

Minimizing total travel time and excess user ride time:  !1 = 0.75,  !2 = 0.25
Objective: 
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1.3 Introduction: E-ADARP 
Problem definition

• Constraints on arcs and nodes 
• Time window on pickup and drop-off nodes 
• Capacity of vehicle (Identical) 
• User maximum ride time 
• Battery and charging limitation (minimum 

battery level at the end of route)

Constraints:

Given data :

• Pickup and drop-off locations for each request 
• Recharging station locations
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1.3 Introduction: E-ADARP 
Extended formulation (master problem)
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Continuous Restricted MP (RMP)Set covering problem (MP)
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2. Methodology 
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pricing sub-problem:

min
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• Constraints on arcs and nodes 
• Time window on pickup and drop-off nodes 
• Capacity of vehicle 
• Maximum user ride time 
• Minimum battery level constraint 
• Battery capacity constraints 
• Vehicle capacity constraints  
• Restricted visit to recharging station

Subject to:
;(
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Continuous RMP
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2.1 CG approach for E-ADARP 
Column generation scheme

16



Pricing sub-problem:

min
!∈2′ 

3! − ∑
(∈& ,

6(!;( − ∑
8∈9∪:'

78!<8 −  =

• Constraints on arcs and nodes 
• Time window on pickup and drop-off nodes 
• Capacity of vehicle 
• Maximum user ride time 
• Minimum battery level constraint 
• Battery capacity constraints 
• Vehicle capacity constraints  
• Restricted visit to recharging station

Subject to:

Negative-reduced-cost columns 
into ,′ 

Dual information 
( ,  ,-. /01)

Stop criteria: no negative 
columns can be found 
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Continuous RMP

2.1 CG approach for E-ADARP 
Column generation scheme
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2.2 Labeling algorithm to solve subproblem 
Representation of partial path: how to handle excess user ride time?

min
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Routing cost: 
(1) total travel time  
(2) total excess user ride time

Total excess user ride time:

• We cannot determine the minimum excess 
user ride time when the delivery is not 
complete 

• Total excess user ride time is not always 
increasing if extending node by node
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2.2 Labeling algorithm to solve subproblem 
Representation of partial path: how to handle excess user ride time?
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Routing cost: 
(1) total travel time  
(2) total excess user ride time

Total excess user ride time:

• We cannot determine the minimum excess 
user ride time when the delivery is not 
complete 

• Total excess user ride time is not always 
increasing if extending node by node

Confliction in dominance rule:

• If label 1 dominates label 2 because of lower 
reduced cost, however after extend label1 and 
label 2 from current node   to the next node 
,  

(
$ 3>?+′ 1 > 3>?+′ 2

We cannot extend the partial path node by node!
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2.2 Labeling algorithm to solve subproblem 
Representation of partial path

Zero-split node:

• The node that no passenger on board at 
arrival/departure 

• Example: depot, recharging station, pickup/
drop-off (with condition)

depot 1+ 2+ 1- 2-
 t = 45 t=30 t=15  t=25

 [0,400]
 
[50,100]

 
[80,140]  [155,170]  [175,190]

2 = 31 + 32 + ⋯ + 3n

Segment:

Segment that starts and ends with zero-split node
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2.2 Labeling algorithm to solve subproblem 
Calculate the minimum excess user ride time for each segment

• Stage 1: determine the latest optimal schedule  for a given segment; 

• Stage 2: based on stage 1, determine the earliest optimal schedule  for a given segment;
ℬl

ℬe

Two-stage evaluation scheme:

With  and  we have all the optimal schedules for a segment!ℬe ℬl

Maximum user ride time feasibility

• Checked after we obtain   and  ℬe ℬl

21

• The optimal schedule is not unique for a given segment; 
• We need to consider all the optimal schedules for a given segment;

Important points:



2.2 Labeling algorithm to solve subproblem 
Cost evaluation in each segment: two-stage evaluation scheme
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1+ 2+ 1- 2-
t=30 t=25  t=25

 
[50,100]

 
[70,120]  [95,115]  [120,170]

 ℬl

ℬδ

ℬe

60 − δ 90 − δ 115 − δ 140 − δ

60

50

90

80

115

105

140

130

With  and  we have all the optimal schedules for a zero-split segment!ℬe ℬl



2.2 Labeling algorithm to solve subproblem 
Convert original graph to a sparser graph
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1+ 2+ 1- 2-
t=30 t=25  t=25

 
[50,100]

 
[70,120]  [95,115]  [120,170]

1+ 2-

 [50,60]  [130,140]

t′ 2−,1+ = ℬl
2− − ℬl

1+ = 140 − 60

We can transform  to an arc 3 = {1,⋯, m} (1,m)

• The total travel time from 1 to  (denoted as 
) is  

• The time window of node 1 is  and 

  

•
The energy consumption 1 to  is 

m
t′ 1,m ℬl

m − ℬl
1

[ℬe
1, ℬl

1]
[ℬe

m, ℬl
m]

m
m−1

∑
i=1

hi,i+1



2.2 Labeling algorithm to solve subproblem 
Convert original graph to a sparser graph

Converting E-ADARP to E-VRP! 
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depot

RC

j- g+ g-i+ …

depot

RC

j- g+ g-i+

[ei+, li+] [ej−, lj−][edepot, ldepot] [eg+, lg+] [eg−, lg−]

[eRC, lRC]

[edepot, ldepot] [ℬe
i+, ℬl

i+] [ℬe
j−, ℬl

j−]

[eRC, lRC]

[ℬe
g+, ℬl

g+] [ℬe
g−, ℬl

g−]

t′ i+, j− = ℬl
j− − ℬl

i+



2.2 Labeling algorithm to solve subproblem 
Acceleration strategy: segment concatenation

2+

1+

i+

n+

…
…

All the possible sequences 
for n pickup nodes

=> Constant time feasibility checking
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2.2 Labeling algorithm to solve subproblem 
Label extension, feasibility checking, and dominance rules (based 
on Desaulniers et al., 2016)
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Li = {Tcost
i , (Trchs

j )s∈S, TtMin
i , TtMax

i , TrtMax
i , Treq

i }

Tcost
j = Tcost

i + c̄i, j

Treq
j = Treq

i ∪ Un(TtMin
j )

Trchs
j = Trchs

i + {1, if j = s
0, otherwise

TtMin
j = {

max{ℬe
j , TtMin

i + t′ i, j}, ifTrch
i = ∅

max{ℬe
j , TtMin

i + t′ i, j} + Zi, j, otherwise

TtMax
j = {

min{ℬl
j, max{ℬe

j , TtMin
i + TrtMax

i + t′ i, j}}, ifi ∈ S

min{ℬl
j, max{ℬe

j , TtMax
i + t′ i, j}}, otherwise

TrtMax
j = {

TrtMax
i + h′ i, j, ifTrch

i = ∅
min{H, max{0,TrtMax

i − Si, j} + h′ i, j}, otherwise

Label definition:

Resources extension functions:



2.2 Labeling algorithm to solve subproblem 
Label extension, feasibility checking, and dominance rules
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Dominance rule:

Tr
1 ⩽ Tr

2, ∀r ∈ {cost, rch, tMin}

Treq
1 ⊆ Treq

2

TrtMax
1 − (TtMax

1 − TtMin
1 ) ⩽ TrtMax

2 − (TtMax
2 − TtMin

2 )

TrtMax
1 − (TtMax

2 − TtMin
2 ) ⩽ TrtMax

2

Assume that the partial path associated to  and  are  and , respectively, and ,  end at the same 
nodeLabel 1 dominates label 2 if:

L1 L2 21 22 21 22

Let  are two labelsLk = {Tcost
i , (Trchs

j )s∈S, TtMin
i , TtMax

i , TrtMax
i , Treq

i }, k ∈ 1,2



3. Computational Results 
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Real-world ride-sharing dataset of Uber Technologies B&C solution

• With up to 5 vehicles and 50 requests 
• Type-u instances

• With up to 5 vehicles and 50 requests. The largest instance solved optimally by state-of-the-art method (B&C) 
is with 5 vehicles and 40 requests 

• Type-a instances

Adapted instances from standard DARP instances in Cordeau (2006) B&C solution

3.1 Benchmark instances 
Existing instances from literature

• With up to 8 vehicles and 96 requests. 
• Type-r instances 

Adapted instances from DARP instances in Ropke, Cordeau, and Laporte(2007) DA solution
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3.2 Computational results 
On type-a instances under low energy restriction (10% energy kept 
at the end of route)
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12/14 instances solved optimally at the root node 
Lower bound improved by 0.7% on average, 2 lower bounds improved (maximum: 5.04%) 
Computational time decreased 59.26% on average



3.2 Computational results 
On type-a instances under medium energy restriction (40% energy 
kept at the end of route)

31

11/14 instances solved optimally at the root node, 4 new optimal solutions identified 
Lower bound improved by 1.97% on average, maximum improvement: 23.34% 
Computational time decreased 27.49% on average



3.2 Computational results 
On type-a instances under high energy restriction (70% energy kept 
at the end of route)
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5/14 instances solved optimally at the root node, 7 new best solutions  
Lower bound improved by 1.31% on average, maximum improvement of 4.99% 
Computational time decreased 52.63% on average



3.2 Computational results 
On type-u instances under low energy restriction (10% energy kept 
at the end of route)
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10/14 instances solved optimally at the root node, 2 new best solutions  
Lower bound improved by 1.44% on average (maximum improvement 8.46%) 



3.2 Computational results 
On type-u instances under medium energy restriction (40% energy 
kept at the end of route)
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9/14 instances solved optimally at the root node, 4 new best solutions  
Lower bound improved by 1.47% on average (maximum improvement 8.48%) 



3.2 Computational results 
On type-u instances under high energy restriction (70% energy kept 
at the end of route)
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4/14 instances solved optimally at the root node, 5 new best solutions  
Lower bound improved by 0.95% on average (maximum improvement: 10.92%) 



3.2 Computational results 
On type-r instances under different energy restrictions
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Performance of CG algorithm on type-a and –u instances

- 50 out of 84 solved optimally at the root node 
- Very small deviation (0.31% on average) noticed at the root node => a relatively 

small number of nodes to search in the B&P tree 
- Significant improvement on lower bound: 40 equal lower bounds and 24 better lower 

bounds. 1.3% increase on lower bound on average 
- 22 new best integer solutions reported, 15 are newly-identified optimal solutions 
- Shorter computational time than B&C: 30% decrease on average

Performance of CG algorithm on type-r instances
- 14 better integer solutions, 5 are optimal solutions 
- 17 first-reported lower bounds

3.2 Computational results 
Performance of algorithm
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4. Conclusion & extension
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4.1 Conclusion & Extension

39

- Extend CG with labeling algorithm to related topic such as E-PDPTW; 

- The novel scheduling optimization method can be used in a multiple-objective 
optimization context; 

- Adapt CG with labeling algorithm to handle dynamic DARP, with requests being 
renewed

Future works

- New representation of partial path and novel schedule optimization method; 

- Efficient CG algorithm with customized labeling algorithm for E-ADARP; 

- Significant improvement on lower bound quality and solution quality to state-of-the-
art works; 

- CG algorithm is proved to be capable of handling large-sized instances 

Conclusion
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